Endophytic Actinomycetes: A Novel Source of Potential Acyl Homoserine Lactone Degrading Enzymes
نویسندگان
چکیده
Several Gram-negative pathogenic bacteria employ N-acyl-L-homoserine lactone (HSL) quorum sensing (QS) system to control their virulence traits. Degradation of acyl-HSL signal molecules by quorum quenching enzyme (QQE) results in a loss of pathogenicity in QS-dependent organisms. The QQE activity of actinomycetes in rhizospheric soil and inside plant tissue was explored in order to obtain novel strains with high HSL-degrading activity. Among 344 rhizospheric and 132 endophytic isolates, 127 (36.9%) and 68 (51.5%) of them, respectively, possessed the QQE activity. The highest HSL-degrading activity was at 151.30 ± 3.1 nmole/h/mL from an endophytic actinomycetes isolate, LPC029. The isolate was identified as Streptomyces based on 16S rRNA gene sequence similarity. The QQE from LPC029 revealed HSL-acylase activity that was able to cleave an amide bond of acyl-side chain in HSL substrate as determined by HPLC. LPC029 HSL-acylase showed broad substrate specificity from C6- to C12-HSL in which C10HSL is the most favorable substrate for this enzyme. In an in vitro pathogenicity assay, the partially purified HSL-acylase efficiently suppressed soft rot of potato caused by Pectobacterium carotovorum ssp. carotovorum as demonstrated. To our knowledge, this is the first report of HSL-acylase activity derived from an endophytic Streptomyces.
منابع مشابه
Biochemical Detection of N-Acyl Homoserine Lactone from Biofilm-Forming Uropathogenic Escherichia coli Isolated from Urinary Tract Infection Samples
Background: N-Acyl homoserine lactone (AHL) is found to be the main component of quorum sensing (QS) in Gram-negative bacteria and plays an important role in biofilm formation. Little information is available regarding the role of AHL in biofilm formation in Escherichia coli (E. coli). The purpose of this investigation was to biochemically detect and characterize AHL activity in biofilm-forming...
متن کاملN-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities.
The Rhodococcus erythropolis strain W2 has been shown previously to degrade the N-acylhomoserine lactone (AHL) quorum-sensing signal molecule N-hexanoyl-L-homoserine lactone, produced by other bacteria. Data presented here indicate that this Gram-positive bacterium is also capable of using various AHLs as the sole carbon and energy source. The enzymic activities responsible for AHL inactivation...
متن کاملDraft Genome Sequence of Jeotgalibacillus soli DSM 23228, a Bacterium Isolated from Alkaline Sandy Soil
Jeotgalibacillus soli, a bacterium capable of degrading N-acyl homoserine lactone, was isolated from a soil sample in Portugal. J. soli constitutes the only Jeotgalibacillus species isolated from a non-marine source. Here, the draft genome, several interesting glycosyl hydrolases, and its putative N-acyl homoserine lactonases are presented.
متن کاملQuenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules.
Many Gram-positive and Gram-negative bacteria communicate using small diffusible signal molecules called autoinducers. This process, known as quorum sensing (QS), links cell density to the expression of genes as diverse as those associated with virulence factors production of plant and animal pathogens, bioluminescence, antibiotic production, sporulation or biofilm formation. In Gram-negative b...
متن کاملAidP, a novel N-Acyl homoserine lactonase gene from Antarctic Planococcus sp.
Planococcus is a Gram-positive halotolerant bacterial genus in the phylum Firmicutes, commonly found in various habitats in Antarctica. Quorum quenching (QQ) is the disruption of bacterial cell-to-cell communication (known as quorum sensing), which has previously been described in mesophilic bacteria. This study demonstrated the QQ activity of a psychrotolerant strain, Planococcus versutus stra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013